|
CFD Review |
|
|
Site Sponsors |
|
|
Tell a Friend |
|
|
|
Help this site to grow by sending a friend an
invitation to visit this site.
|
|
|
|
|
CFD News by Email |
|
|
|
Did you know that you can get today's CFD Review headlines mailed to your inbox?
Just log in and select Email Headlines Each Night on your User Preferences page.
|
|
|
|
| |
|
Continuous Inkjet Printing |
|
|
|
|
Although this concept was first patented by Lord Kelvin in 1867, the first commercial devices appeared more than 80 years later, in 1951 by Siemens. Initially the technology was used for high speed, contact-less printing of variable information such as expiration dates, batch codes as well as names and product logos.
Continuous inkjet printing begins with a high-pressure pump that directs liquid from a reservoir to a bank of micrometer-sized nozzles, thus creating a continuous stream of droplets at frequencies determined by the oscillations of a vibrating piezoelectric crystal. For printing applications specifically, ink droplets are being deflected from the continuous stream due to the presence of an external electric field. This generates patterns on the surface of a printing medium. Some of the advantages of this technique are high throughput, high droplet velocities, increased distances from printhead to substrate, and no nozzle clogging due to continuous operation. Thanks to these positive attributes, this technology has, nowadays, evolved from regular printing ink on paper to depositing a variety of materials (even living cells), to creating modern OLED (Organic Light Emitting Diode) displays.
Read the full article at https://www.flow3d.com/continuous-inkjet-printing/
|
|
|
|
[ Post Comment ]
< CFD Aids Human Heart Model | Latest Pointwise Meshing Software Includes Graphics Improvements > | |
|
CFD Review Login |
|
|
Related Links |
|
|