CFD Review  
Serving the CFD Community with News, Articles, and Discussion
 
CFD Review

User Preferences
Site Sponsorship
Headline Feeds
Mobile Edition
Privacy Policy
Terms of Service
twitter

Submit a CFD Story

Site Sponsors
The Choice for CFD Meshing
Azore CFD
CFD Review

Tell a Friend
Help this site to grow by sending a friend an invitation to visit this site.

CFD News by Email
Did you know that you can get today's CFD Review headlines mailed to your inbox? Just log in and select Email Headlines Each Night on your User Preferences page.

 
Adding Uncertainty to Improve Mathematical Models
Posted Tue September 30, 2014 @02:46PM
Print version Email story Tweet story
News Mathematicians from Brown University have introduced a new element of uncertainty into an equation used to describe the behavior of fluid flows. While being as certain as possible is generally the stock and trade of mathematics, the researchers hope this new formulation might ultimately lead to mathematical models that better reflect the inherent uncertainties of the natural world.

Sponsor CFD Review

The research, published in Proceedings of the Royal Society A, deals with Burgers’ equation, which is used to describe turbulence and shocks in fluid flows. The equation can be used, for example, to model the formation of a front when airflows run into each other in the atmosphere.

“Say you have a wave that’s moving very fast in the atmosphere,” said George Karniadakis, the Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics at Brown and senior author of the new research. “If the rest of the air in the domain is at rest, then flow one goes over the other. That creates a very stiff front or a shock, and that’s what Burgers’ equation describes.”

It does so, however, in what Karniadakis describes as “a very sterilized” way, meaning the flows are modeled in the absence of external influences.

For example, when modeling turbulence in the atmosphere, the equations don’t take into consideration the fact that the airflows are interacting not just with each other, but also with whatever terrain may be below — be it a mountain, a valley or a plain. In a general model designed to capture any random point of the atmosphere, it’s impossible to know what landforms might lie underneath. But the effects of whatever those landforms might be can still be accounted for in the equation by adding a new term — one that treats those effects as a “random forcing.”

In this latest research, Karniadakis and his colleagues showed that Burgers’ equation can indeed be solved in the presence of this additional random term. The new term produces a range of solutions that accounts for uncertain external conditions that could be acting on the model system.

The work is part of a larger effort and a burgeoning field in mathematics called uncertainty quantification (UQ). Karniadakis is leading a Multidisciplinary University Research Initiative centered at Brown to lay out the mathematical foundations of UQ.

“The general idea in UQ,” Karniadakis said, “is that when we model a system, we have to simplify it. When we simplify it, we throw out important degrees of freedom. So in UQ, we account for the fact that we committed a crime with our simplification and we try to reintroduce some of those degrees of freedom as a random forcing. It allows us to get more realism from our simulations and our predictions.”

Solving these equations is computationally expensive, and only in recent years has computing power reached a level that makes such calculations possible.

“This is something people have thought about for years,” Karniadakis said. “During my career, computing power has increased by a factor of a billion, so now we can think about harnessing that power.”

The aim, ultimately, is to make the mathematical models describing all kinds of phenomena — from atmospheric currents to the cardiovascular system to gene expression — that better reflect the uncertainties of the natural world.

Heyrim Cho and Daniele Venturi were co-authors on the paper. The work was supported by the Air Force Office of Scientific Research (FA9550-09-1-0613), the Department of Energy (DE-SC0009247) and the National Science Foundation (DMS-1216437).

[ Post Comment ]

Pointwise Announces Presenter Lineup for User Group Meeting | Cooling of a Wind Power Station IGBT  >

 

 
CFD Review Login
User name:

Password:

Create an Account

Related Links
  • Brown University
  • element of uncertainty
  • More on News
  • This discussion has been archived. No new comments can be posted.

    Your boyfriend takes chocolate from strangers. All content except comments
    ©2022, Viable Computing.

    [ home | submit story | search | polls | faq | preferences | privacy | terms of service | rss  ]